Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We consider the Cauchy problem for the logarithmically singular surface quasi-geostrophic (SQG) equation, introduced by Ohkitani,$$\begin{aligned} \begin{aligned} \partial _t \theta - \nabla ^\perp \log (10+(-\Delta )^{\frac{1}{2}})\theta \cdot \nabla \theta = 0, \end{aligned} \end{aligned}$$ and establish local existence and uniqueness of smooth solutions in the scale of Sobolev spaces with exponent decreasing with time. Such a decrease of the Sobolev exponent is necessary, as we have shown in the companion paper (Chae et al. in Illposedness via degenerate dispersion for generalized surface quasi-geostrophic equations with singular velocities,arXiv:2308.02120) that the problem is strongly ill-posed in any fixed Sobolev spaces. The time dependence of the Sobolev exponent can be removed when there is a dissipation term strictly stronger than log. These results improve wellposedness statements by Chae et al. (Comm Pure Appl Math 65(8):1037–1066, 2012). This well-posedness result can be applied to describe the long-time dynamics of the$$\delta $$ -SQG equations, defined by$$\begin{aligned} \begin{aligned} \partial _t \theta + \nabla ^\perp (10+(-\Delta )^{\frac{1}{2}})^{-\delta }\theta \cdot \nabla \theta = 0, \end{aligned} \end{aligned}$$ for all sufficiently small$$\delta >0$$ depending on the size of the initial data. For the same range of$$\delta $$ , we establish global well-posedness of smooth solutions to the dissipative SQG equations.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            The purpose of this work is to discuss the well-posedness theory of singular vortex patches. Our main results are of two types: well-posedness and ill-posedness. On the well-posedness side, we show that globally m m -fold symmetric vortex patches with corners emanating from the origin are globally well-posed in natural regularity classes as long as m ≥ 3. m\geq 3. In this case, all of the angles involved solve a closed ODE system which dictates the global-in-time dynamics of the corners and only depends on the initial locations and sizes of the corners. Along the way we obtain a global well-posedness result for a class of symmetric patches with boundary singular at the origin, which includes logarithmic spirals. On the ill-posedness side, we show that any other type of corner singularity in a vortex patch cannot evolve continuously in time except possibly when all corners involved have precisely the angle π 2 \frac {\pi }{2} for all time. Even in the case of vortex patches with corners of angle π 2 \frac {\pi }{2} or with corners which are only locally m m -fold symmetric, we prove that they are generically ill-posed. We expect that in these cases of ill-posedness, the vortex patches actually cusp immediately in a self-similar way and we derive some asymptotic models which may be useful in giving a more precise description of the dynamics. In a companion work from 2020 on singular vortex patches, we discuss the long-time behavior of symmetric vortex patches with corners and use them to construct patches on R 2 \mathbb {R}^2 with interesting dynamical behavior such as cusping and spiral formation in infinite time.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
